85 research outputs found

    Figure 1: Experimental setup 40 Gb/s NRZ Wavelength Conversion with Enhanced 2R Regeneration Characteristics using a Differentially-biased SOA-MZI switch

    Get PDF
    Abstract We present error-free 40 Gb/s NRZ signal wavelength conversion with a differential biasing scheme in a SOA -Mach Zehnder Interferometer. Experimental performance analysis shows 1.7 dB negative power penalty and enhanced 2R regenerative characteristics

    An SOA-MZI NRZ Wavelength Conversion Scheme With Enhanced 2R Regeneration Characteristics

    Full text link

    Temperature and wavelength drift tolerant WDM transmission and routing in on-chip silicon photonic interconnects

    Get PDF
    We demonstrate a temperature and wavelength shift resilient silicon transmission and routing interconnect system suitable for multi-socket interconnects, utilizing a dual-strategy CLIPP feedback circuitry that safeguards the operating point of the constituent photonic building blocks along the entire on-chip transmission-multiplexing-routing chain. The control circuit leverages a novel control power-independent and calibration-free locking strategy that exploits the 2nd derivative of ring resonator modulators (RMs) transfer function to lock them close to the point of minimum transmission penalty. The system performance was evaluated on an integrated Silicon Photonics 2-socket demonstrator, enforcing control over a chain of RM-MUX-AWGR resonant structures and stressed against thermal and wavelength shift perturbations. The thermal and wavelength stress tests ranged from 27 degrees C to 36 degrees C and 1309.90 nm to 1310.85 nm and revealed average eye diagrams Q-factor values of 5.8 and 5.9 respectively, validating the system robustness to unstable environments and fabrication variations. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen

    Co-Package Technology Platform for Low-Power and Low-Cost Data Centers

    Get PDF
    We report recent advances in photonic–electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes based on slow light modulation were developed to assist in achieving an efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Improved semiconductor quantum dot MBE growth, characterization and gain stack designs were developed. Packaging of these 2D photonic arrays in a chiplet configuration was demonstrated using a vertical integration approach in which the optical interconnect matrix was flip-chip assembled on top of a CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surrounded by several such optical chiplets. We summarize the features of the L3MATRIX co-package technology platform and its holistic toolbox of technologies to address the next generation of computing challenges

    Comparison of gain clamped and conventional semiconductor optical amplifiers for fast all-optical switching

    No full text

    A 60 GHz radio-over-fiber network architecture for seamless communication with high mobility

    No full text

    2 × 2 exchange/bypass switch using 0.8 m of highly nonlinear bismuth oxide fiber

    No full text
    • …
    corecore